3.2.30 \(\int x^3 \text {arcsinh}(a x)^n \, dx\) [130]

3.2.30.1 Optimal result
3.2.30.2 Mathematica [A] (verified)
3.2.30.3 Rubi [A] (verified)
3.2.30.4 Maple [F]
3.2.30.5 Fricas [F]
3.2.30.6 Sympy [F]
3.2.30.7 Maxima [F]
3.2.30.8 Giac [F(-2)]
3.2.30.9 Mupad [F(-1)]

3.2.30.1 Optimal result

Integrand size = 10, antiderivative size = 119 \[ \int x^3 \text {arcsinh}(a x)^n \, dx=\frac {2^{-2 (3+n)} (-\text {arcsinh}(a x))^{-n} \text {arcsinh}(a x)^n \Gamma (1+n,-4 \text {arcsinh}(a x))}{a^4}-\frac {2^{-4-n} (-\text {arcsinh}(a x))^{-n} \text {arcsinh}(a x)^n \Gamma (1+n,-2 \text {arcsinh}(a x))}{a^4}-\frac {2^{-4-n} \Gamma (1+n,2 \text {arcsinh}(a x))}{a^4}+\frac {2^{-2 (3+n)} \Gamma (1+n,4 \text {arcsinh}(a x))}{a^4} \]

output
arcsinh(a*x)^n*GAMMA(1+n,-4*arcsinh(a*x))/(2^(6+2*n))/a^4/((-arcsinh(a*x)) 
^n)-2^(-4-n)*arcsinh(a*x)^n*GAMMA(1+n,-2*arcsinh(a*x))/a^4/((-arcsinh(a*x) 
)^n)-2^(-4-n)*GAMMA(1+n,2*arcsinh(a*x))/a^4+GAMMA(1+n,4*arcsinh(a*x))/(2^( 
6+2*n))/a^4
 
3.2.30.2 Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.83 \[ \int x^3 \text {arcsinh}(a x)^n \, dx=\frac {4^{-3-n} (-\text {arcsinh}(a x))^{-n} \left (\text {arcsinh}(a x)^n \Gamma (1+n,-4 \text {arcsinh}(a x))-2^{2+n} \text {arcsinh}(a x)^n \Gamma (1+n,-2 \text {arcsinh}(a x))+(-\text {arcsinh}(a x))^n \left (-2^{2+n} \Gamma (1+n,2 \text {arcsinh}(a x))+\Gamma (1+n,4 \text {arcsinh}(a x))\right )\right )}{a^4} \]

input
Integrate[x^3*ArcSinh[a*x]^n,x]
 
output
(4^(-3 - n)*(ArcSinh[a*x]^n*Gamma[1 + n, -4*ArcSinh[a*x]] - 2^(2 + n)*ArcS 
inh[a*x]^n*Gamma[1 + n, -2*ArcSinh[a*x]] + (-ArcSinh[a*x])^n*(-(2^(2 + n)* 
Gamma[1 + n, 2*ArcSinh[a*x]]) + Gamma[1 + n, 4*ArcSinh[a*x]])))/(a^4*(-Arc 
Sinh[a*x])^n)
 
3.2.30.3 Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.93, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {6195, 5971, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^3 \text {arcsinh}(a x)^n \, dx\)

\(\Big \downarrow \) 6195

\(\displaystyle \frac {\int a^3 x^3 \sqrt {a^2 x^2+1} \text {arcsinh}(a x)^nd\text {arcsinh}(a x)}{a^4}\)

\(\Big \downarrow \) 5971

\(\displaystyle \frac {\int \left (\frac {1}{8} \text {arcsinh}(a x)^n \sinh (4 \text {arcsinh}(a x))-\frac {1}{4} \text {arcsinh}(a x)^n \sinh (2 \text {arcsinh}(a x))\right )d\text {arcsinh}(a x)}{a^4}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2^{-2 (n+3)} \text {arcsinh}(a x)^n (-\text {arcsinh}(a x))^{-n} \Gamma (n+1,-4 \text {arcsinh}(a x))-2^{-n-4} \text {arcsinh}(a x)^n (-\text {arcsinh}(a x))^{-n} \Gamma (n+1,-2 \text {arcsinh}(a x))-2^{-n-4} \Gamma (n+1,2 \text {arcsinh}(a x))+2^{-2 (n+3)} \Gamma (n+1,4 \text {arcsinh}(a x))}{a^4}\)

input
Int[x^3*ArcSinh[a*x]^n,x]
 
output
((ArcSinh[a*x]^n*Gamma[1 + n, -4*ArcSinh[a*x]])/(2^(2*(3 + n))*(-ArcSinh[a 
*x])^n) - (2^(-4 - n)*ArcSinh[a*x]^n*Gamma[1 + n, -2*ArcSinh[a*x]])/(-ArcS 
inh[a*x])^n - 2^(-4 - n)*Gamma[1 + n, 2*ArcSinh[a*x]] + Gamma[1 + n, 4*Arc 
Sinh[a*x]]/2^(2*(3 + n)))/a^4
 

3.2.30.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5971
Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + 
(b_.)*(x_)]^(n_.), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sinh[a + 
b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] & 
& IGtQ[p, 0]
 

rule 6195
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[ 
1/(b*c^(m + 1))   Subst[Int[x^n*Sinh[-a/b + x/b]^m*Cosh[-a/b + x/b], x], x, 
 a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]
 
3.2.30.4 Maple [F]

\[\int x^{3} \operatorname {arcsinh}\left (a x \right )^{n}d x\]

input
int(x^3*arcsinh(a*x)^n,x)
 
output
int(x^3*arcsinh(a*x)^n,x)
 
3.2.30.5 Fricas [F]

\[ \int x^3 \text {arcsinh}(a x)^n \, dx=\int { x^{3} \operatorname {arsinh}\left (a x\right )^{n} \,d x } \]

input
integrate(x^3*arcsinh(a*x)^n,x, algorithm="fricas")
 
output
integral(x^3*arcsinh(a*x)^n, x)
 
3.2.30.6 Sympy [F]

\[ \int x^3 \text {arcsinh}(a x)^n \, dx=\int x^{3} \operatorname {asinh}^{n}{\left (a x \right )}\, dx \]

input
integrate(x**3*asinh(a*x)**n,x)
 
output
Integral(x**3*asinh(a*x)**n, x)
 
3.2.30.7 Maxima [F]

\[ \int x^3 \text {arcsinh}(a x)^n \, dx=\int { x^{3} \operatorname {arsinh}\left (a x\right )^{n} \,d x } \]

input
integrate(x^3*arcsinh(a*x)^n,x, algorithm="maxima")
 
output
integrate(x^3*arcsinh(a*x)^n, x)
 
3.2.30.8 Giac [F(-2)]

Exception generated. \[ \int x^3 \text {arcsinh}(a x)^n \, dx=\text {Exception raised: TypeError} \]

input
integrate(x^3*arcsinh(a*x)^n,x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 
3.2.30.9 Mupad [F(-1)]

Timed out. \[ \int x^3 \text {arcsinh}(a x)^n \, dx=\int x^3\,{\mathrm {asinh}\left (a\,x\right )}^n \,d x \]

input
int(x^3*asinh(a*x)^n,x)
 
output
int(x^3*asinh(a*x)^n, x)